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1 Introduction 

A fixed point problem is that of finding a point x ∈ X such that T(x) = x, where T :X → 
Y is a map and X ⊆ Y . The famous Banach fixed point theorem (also called the 
contraction mapping principle) states that every contraction mapping defined on a 
complete metric space into itself has a unique fixed point (see, e.g., [1]). The 
Brouwer fixed point theorem, [7], states that if f :B → B is a continuous function and 
B a closed ball in Rn, then f has a fixed point. These are some of the well-known, in 
fact some of the most celebrated theorems in fixed point theory. The numerous 
applications of fixed point theory, perhaps, are the reason why it attracts the 
attention of many researchers. The applications are found in such areas as, theory 
of Ordinary and Partial Differential Equations, Integral Equations, Integro-
differential Equations, Optimization, Evolution equations and many others (see, e.g., 
[1], [10]). To solve many problems in these areas, one may be able to rewrite the 
problem as a fixed point problem for some appropriate map in some appropriate 
domain. For instance, to show that the equation 
 x2− 2 = 0 (1.1) 

has a solution in R, one may consider the function 

Tx= x2 + x − 2, x ∈ R. 
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It is immediate that x is a solution of the equation (1.1) if and only if x is a fixed point 
of T. A fixed point problem normally has two parts : 

• existence/uniqueness of a solution and 

• obtaining a solution. 

The Banach fixed point theorem addresses both existence / uniqueness and 
obtaining a solution questions. This, among other reasons, is what makes it famous 
(see, e.g., [2]). To address the question of obtaining a solution (of fixed point or 
other problem), the notion of iterative algorithms is developed. The study of fixed 
point of multi-valued maps has attracted the interest of so many mathematicians 
(and researchers from other fields), where a point x ∈ D(T) ⊆ X is a fixed point of a 
multi-valued map T : X → 2X if x ∈ Tx 
(see, e.g., [2], [17], [9], [14], [16]). This is partly due to the fact that many problems 
in some areas of mathematics such as Convex Optimization, Game theory, 
Variational Inequality Problems (VIP), etc. can be written as fixed point problems for 
multi-valued maps. As in the case of single-valued, there are two questions with 
regard to fixed point problems of multi-valued map: 

• does a solution exist? 

• if a solution exists, how do we obtain it? 

For instance in Convex optimization one seeks to: 

  (MP) 

whereH is a Hilbert space and f : H → R ∪ {+∞} is convex. 
Define ∂f :H → 2H by 

∂f(x) = {y ∈ H : <y,u–x> ≤ f(u) − f(x) ∀u ∈ H} 
Then x is a zero of ∂f (i.e., 0∈∂f(x)) if and only if x solves (MP). Indeed, 

 0 ∈ ∂f(x) ⇔ <0,u–x> ≤ f(u) − f(x) ∀u ∈ H 

 ⇔ 0 ≤ f(u) − f(x) ∀u ∈ H 

 ⇔ f(x) ≤ f(u) ∀u ∈ H 

 ⇔ xis a global minimizer of f. 
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Observe that finding a zero of ∂f is equivalent to finding a fixed point of the multi-
valued map T :=I − ∂f, where I is the identity map of H. 
Indeed, 

x ∈ Tx ⇔ x = x − u for some u ∈ ∂f(x) 
 ⇔ 0 = u for some u ∈ ∂f(x) 

 ⇔ 0 ∈ ∂f(x). 

Thus, solving the unconstrained optimizations problem (MP) is reduced to finding a 
fixed point of some multi-valued map. 

1.1 Iterative algorithms for single-valued maps 

Theorem 1.1(Banach fixed point theorem, see, e.g., [1], [10] )Let(X,d) be a complete 

metric space andT : X → X be a contraction, i.e., there existsk ∈ [0,1) such 

thatd(T(x),T(y)) ≤ kd(x,y) for all x,y∈ X. Then Thas a 

unique fixed point. Moreover, the sequence{xn} 
generated iteratively by 

(BFT) 
. 

from arbitraryx0 ∈ X converges to the unique fixed point of T. 

The theorem above is perhaps the most applicable theorem in fixed point theory. 
This is, partly, due to the fact that it guarantees the existence and uniqueness of the 
fixed point and it gives a simple algorithm which converges to unique fixed point. 
Moreover,the error estimate in the convergence is 1. 
Despite the simplicity and numerous applications of the Banach fixed point 
theorem, one may not be able to apply it if the map is not a contraction. For 
example if the map is non-expansive. In fact if K is closed nonempty subset of a 
Banach space (therefore complete), a non-expansive map T :K → K may not have a 
fixed point. For instance, T : [0,∞] → [0,∞], Tx= 1+x. This map has no fixed point 
even though [0,∞] is complete and T is non-expansive. If X is a normed linear space, 
T :K → K is a non-expansive map and K is convex. The iterative sequence generated 
by xn+1 = (1 − λ)xn+ λTxnwhich was given by Schaefer was used with a lot of success 
in approximating fixed point of non-expansive maps. See the monograph of 
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Chidume ([1], Ch. 6). In trying to extend the result of Banach (1.1) which was given 
in 1922, to the setting of non-expansive maps, Browder in 1967 proved the 
following theorem: 

Theorem 1.2 (Browder theorem [4])Let Hbe a Hilbert space H and let Dbe a 

bounded, closed and convex subset H. IfT :D → D is a non-expansive map, {tn} ⊂ 

(0,1) : tn→ 1−, then sequence{xn} 

generated by 

(BT) 
, 

converges to a fixed point of T. 

• Theorem 1.2 addresses both the question of existence and that of 
obtaining a fixed point. Although, the theorem required the domain to be 
bounded, which is a huge restriction and the scheme is not iterative, it has 
provided the chance to have existence as well as obtaining fixed point of a 
map which is more general than the contraction in the setting of a Hilbert 
space. Naturally, it is desirable to obtain a similar result in a more general 
Banach space. To this end, Reich in [15] obtained the following theorem in 
1980. 

Theorem 1.3 (Reich, [15])Let X be a uniformly smooth real Banach space and let 

Dbounded, closed and convex subset of X. IfT :D → Dis a nonexpansive map,. 

(RT) 

 + (1 − t)u,t ∈ (0,1). 

Then the sequence{xt} converges to a fixed point ofT as t → 1− 
• Reich extended the result of Browder to a setting of uniformly smooth 

Banach space, which is more general than Hilbert space. It is worthy of 
mention here that to prove both Theorem 1.2 and Theorem 1.3, Banach 
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fixed point theorem (Theorem 1.1) has to be used. This further indicates 
the indispensability of the theorem. In continuation of the quest for better 
and sharper result, Morales and Jung extended the result of Riech to a 
more general one. They were able to give a profound generalization in two 
directions: 

1. with regard to the map, 

2. with regard to the space. 

Precisely, they proved the following theorem: 

Theorem 1.4 (Morales and Jung, [3])Let X be a reflexive Banach space which has 

uniformly Gaˆteaux differentiable norm and K be a nonempty, closed and convex 

subset ofX andT : K → K be a pseudo-contractive mapping withF(T) ≠ ∅. Suppose 

that every nonempty closed convex bounded subset of K has a fixed point property 

for non-expansive mappings. Then there 

exists a continuous patht → zt, satisfying 

(MJ) 
. 

Then the sequence{yt} converges strongly to a fixed point ofT. 

1.2 Iterative algorithms for multi-valued maps 

Researchers have devoted a lot of time to see how much of the result which were 
obtained in the fixed point theorem of single-valued maps (see, [2], [1], [17], [9], 
[14], [16]) can also be obtained for the multi-valued settings. Certainly, a lot of 
challenges were faced and are still being faced due to the complexity of the multi-
valued situation. In this direction Pietramala in [9] gave an example which shows 
that Browder’s Theorem 1.2 cannot be extended to multi-valued settings. Very 
recently, Ofoedu and Zegeye (see, [17]) obtained the multi-valued version of the 
theorem 1.4 of Morales and Jung. They proved the following lemma: 
Lemma 1.1 (Ofoedu and Zegeye, [17])Let Dbe a nonempty, open and 
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convex subset of a real Banach space X. Assuming thatT : D → CB(X) is a multi-

valued continuous (with respect to the hausdorff metric), bounded and 

 
pseudo-contractive mapping satisfying weakly inward condition andu ∈ D be 

 
fixed. Thenfort∈ (0,1) thereexistsyt∈ D satisfyingyt∈ tTyt+ (1 − t)u. Ifinaddition, X is 

reflexive and has uniformly Ga´teaux differentiable norm and 

 
is such that every closed, convex and bounded subset ofD has the fixed point 

property for non-expansive self mapping, thenT has a fixed point if and only if{yt} 

remains bounded ast → 1; moreover, in this case, {yt} converges strongly to a fixed 

point ofT ast → 1. 

This marked a serious breakthrough in extending results which were known in 
single-valued setting to multi-valued setting. Utilizing this Lemma (1.1), Ofoedu and 
Zegeye were able to develop an algorithm which converges strongly to a fixed point 
Lipschitzs pseudo-contractive maps in the setting of reflexive real Banach space 
having Gaˆteaux differentiable norm. In fact they proved the following 
theorem: 

Theorem 1.5 (Ofoedu and Zegeye, [17])Let Xbe a reflexive real Banach space having 

a uniformly Gateauxˆ differentiable norm, Dbe a nonempty, open and convex subset 

of X, such that every closed, convex, bounded and nonempty subset of Dhas the 

fixed point property for nonexpansive self-mapping.LetT :D → K(D) be a pseudo-

contractive Lipschitzian mapping with constantL >0 andletu ∈ D befixed. Let{xn} be a 

sequence generated iteratively from 

arbitraryx0 ∈ D, w0 ∈ Tx0 by 
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(OZ) 
. 

Suppose that||wn−wn−1||= d(wn−1,Txn),n ≥ 1. If F(T) ≠ ∅. Then{xn} 

convergesstronglyto a fixed point of T. 

Even though Theorem 1.5 above has provided an algorithm that generates a 
sequence which converges strongly to a fixed point of a multi-valued map, 
Chidumeet al. in [2] made the following observations: 

Remark 1.1 
1. To establish convergence of the scheme (OZ) in Theorem 1.5, the authors 

assumed that||wn− wn−1||= d(wn−1,Txn) for alln ≥ 1. A sufficient condition to 

guarantee this is to assume that for eachx, the setTxis proximinal. In this 

additionTxis convex andE is for example, a real Hilbert space, 

suchwnischaracterized as follows: 

<wn−1 − wn,wn− un> ≥ 0 ∀un ∈ Txn. 

Consequently, this condition requires that a sub-programme be constructed 

to first compute wnat each step of the iteration process. 

2. Nadler remarked in [14] that requiring a multi-valued mapping to be Lipschitz 

is placing a strong continuity condition on the mapping. They (the authors in 

[2]) sought to weaken this condition. In fact, the Lipschitz condition of the 

mapT in Theorem 2.1.5 was weakened to continuity and boundedness of the 

mapT. 

Moreover, in many applications, the real Banach space X is either an Lp-space, a
-space, 1 < p <∞, m ≥ 1, or a Hilbert space. As has been remarked before, all these 
spaces are q-uniformly smooth and reflexive. With these above remarks in their 
mind, it was the purpose in the paper [2] to prove strong convergence theorems for 
fixed point of multi-valued bounded continuous pseudocontractive maps defined on 
q-uniformly smooth real Banach spaces. They used the recursion formula in 
Theorem 1.5, dispensing with the restriction that ||wn− wn−1|| = d(wn−1,Txn) ∀n ≥ 1. 
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Furthermore, their iteration process, in the setting of q-uniformly smooth real 
Banach spaces, is direct, much more applicable than the process in (OZ) since it does 
not require the creation of a sub-programme to first compute wnat each step of the 
iteration process. In particular, in q-uniformly smooth real Banach spaces, their 
theorems extend Theorem 1.5 (of Ofoedu and Zegeye) from multi-valued lipschitz 
pseudo-contractive mappings to the much more general class of multi-valued 
continuous, bounded and pseudo-contractive mappings. They proved the following 
theorem : 

Theorem 1.6 (Chidumeet al., [2])Let Xbe a q-uniformly smooth real Banach space 

and Dbe a nonempty, open and convex subset of X. Assume that 

 

 

 
T :D → CB(D) is a multi-valued continuous (with respect to the hausdorff 

metric),bounded and pseudo-contractive mapping withF(T) ≠ ∅. Let{xn} be 

 
asequence generated iteratively from arbitraryx1 ∈ D by 

(CCDM) 
. 

 

Then, there exists a real constantγ0>0 such that if 

, 

the sequence{xn} converges strongly to a fixed point ofT. 

In this paper, motivated by the above theorem 1.6, we were able to provide an 
application of the theorem in convex optimization problem. However, we were able 
to show that finding a solution of a convex optimization problem is equivalent to 
finding a fixed point of some multi-valued maps. 
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2 Preliminaries and Results 

Remark 2.1We note that every Hilbert space is 2−uniformly smooth. Indeed, the 

modulus of smoothnessρHof any Hilbert space is given byρH(τ) = (1 + 

whichgivesρH(τ) < τ2 (see, e.g., [8]). 

 

Remark 2.2 

1. In every nonempty normed linear spaceX, Jq(x) ≠ ∅ from one of the 

consequences of Hahn-Banach Theorem. 

2. The generalized duality map is the identity map when Xis a real Hilbert space. 

Definition 2.1 (Sub-differential function) Let Hbe Hilbert space and let Dbe a 

nonempty convex subset of H. Supposef :D → R ∪ {+∞} is a convex function. The 

sub-differential function of f, ∂f :H → 2H is defined by 

∂f(x) = {y ∈ H :f(u) ≥ f(x) + <y,u–x> ∀u ∈ H} 

Remark 2.3 
1. Elements of the sub-differential of fare called the sub-gradients of f. 

2. Sub-differential function is maximal monotone. 

Lemma 2.1Let X be a normed space and let A be an open subset of X. If f :A → R has a 

local minimum or local maximum at a ∈ A and f is Gaˆteaux 

differentiable at a, then DGf(a) = 0. 

Proof: Suppose f has a local maximum at a point a ∈ A. It follows that there exists 
some r >0 such that B(a,r) ⊂ A and f(x) ≤ f(a) ∀x ∈ B(a,r). 
Therefore, for all x in X y 6= 0 we have 

. 
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Thus,  Hence, DGf(a)(y) ≤ 0 ∀y ∈ X. This implies 
DGf(a)(−y) ≤ 0 ∀y ∈ X since DGf(a) ∈ X∗. We have DGf(a) ≥ 0 ∀y ∈ X and therefore, 
DGf(a)(y) = 0 ∀y ∈ Y. 

Lemma 2.2Letf : A ⊂ X → R be a convex function on an open subset A of a normed 

spaceX and Gaˆteaux differentiable atx in A then∂f(x) = {DGf(x)}. 

Remark 2.4 

1. When f is Gaˆteaux differentiable, it is usual to write∂f(x) = DGf(x). 

2. Also, forf : A ⊆ X → R differentiable, it is usual to denote by∇f the 

derivativeof f. 

Now, we take the following preliminaries: 

Lemma 2.3Let f :H → R be a convex and Gâteux differentiable function.Then fora ∈ 

H, a is a minimizer of fif and only iffG0 (a) = 0. 

Proof: 
(⇒) Suppose fG0 (x0) = 0. We show that x0 is a global minimizer. Now let x ∈ H and 
let λ ∈ (0,1). By convexity of f, 

f(λx+ (1 − λ)x0)     ≤ λf(x) + (1 − λ)f(x0) =  λf(x) + 

f(x0) − λf(x0). 

By rearranging this we have f(λx+ (1 − λ)x0) − f(x0) ≤ λ(f(x) − f(x0)).  
Dividing through by λ and taking limit as λ → 0+  we have, 
  

 

From our hypothesis fG0 (x0) = 0 so that we obtain 0 ≤ f(x) − f(x0) ∀x ∈ H. This shows 
that f(x0) ≤ f(x) ∀x ∈ H. So x0 is a global minimizer of f. Hence the result. 

(⇐) Suppose x0 ∈ C is a minimizer, goal is to show that fG0 (x0) = 0. This was shown 
in Lemma 2.1. Hence the proof. 
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Lemma 2.4Let f :H → R be a convex function. If f is bounded on bounded sets, 

thenfor all x0∈ H andforallρ >0, f is Lipschitz onBρ(x0). 

Let x0 ∈ H and let ρ >0. We find L >0 such that ∀x,y∈ Bρ(x0), ||f(x) − f(y)|| ≤ L||x –
y||. Since f bounded on bounded sets, there exists some m >0 such that ||f(x)|| ≤ m 
∀x ∈ Bρ(x0). Now let . Then 

 

Therefore, . We observe that 

 . 

Since , we have  . Therefore, 

 (by convexity of f) 

Now we have 

. 

Observing that, 
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we have that . Using the fact that f is bounded 
on bounded sets, it follows that there exists some m ∈ R, m >0 such that 

|f(u)| ≤ m for all Thus, f(x)−f(y) ≤ 

 Following similar arguments we have  

Therefore, .Setting , we conclude that 

|f(x) − f(y)| ≤ L|x–y|for all . Since ρ was arbitrarily chosen, the result 
follows. 

Lemma 2.5 ([6], Ch. 16)Let H be a real Hilbert space and letf :H → R be 

convex and differentiable. Suppose f is bounded on bounded set, then the 

gradientmap∇f :H → H is bounded on bounded subset of H. 

Lemma 2.6Suppose H is a Hilbert space. If A :H → 2H is monotone, then 
(I − A) is pseudo-contractive. 

Proof 
Let A :H → 2H be monotone. Then by definition <u − v,x–y>≥ 0 ∀u ∈ Ax, v ∈ Ay. Our 
goal here is to show that I −A is pseudo-contractive. Now, define T :=I − A, we recall 
from Remark 2, J2 = I (the identity map on H) for real Hilbert spaces. Therefore, for 
x,y∈ H, u¯ ∈ Txand v¯ ∈ Ty, 

 <u¯ − v,J¯(x − y)> = <u¯ − v,I¯ (x –y)> 
 = <u¯ − v,x¯ − y> 

 = <x − u − y + v,x–y>, u ∈ Ax, v ∈ Ay 

 = <x − y − (u − v),x –y>, u ∈ Ax, v ∈ Ay 

So we have, 

= <x − y,x–y> − <u − v,x–y>, u ∈ Ax, v ∈ Ay. 

<u¯ − v,J¯(x − y)> ≤ ||x –y||2 −<u − v,x–y>, u ∈ Ax, v ∈ Ay. 

From hypothesis, <u − v,x–y> ≥ 0 ∀u ∈ Ax, v ∈ Ay. Therefore, <u¯ − v,J¯ (x − y)> ≤ ||x 
–y||2. This shows that T is pseudo-contractive. Hence the result. 
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Lemma 2.7 ([6], Ch.1)LetX be a normed linear space. Suppose Ais a nonempty 

subsetofX. Amapf :A → R ∪ {+∞} is lower semi-continuous if and only if for every x ∈ 

A and{xn} ⊂ A, xn→ x implyf(x) ≤ liminff(xn). n→∞ 

Lemma 2.8 ([13])LetX be a real Banach space. Supposef :X → R∪{+∞} 

is convex, proper (i.e., f(x0) <∞ for somex0 ∈ X) and lower semi-continuous. 

Then the sub-differential of fis maximal monotone. 

2.1 Application 

Theorem 2.1Letf :H → |Rbe a convex, bounded and continuously Fre´chet 

differentiable function on a Hilbert spaceH. Let{xn} be a sequence inH 

generatediteratively by 

(A) 
, 

where{λn} and {θn} are sequences in (0,1) satisfying the following conditions: 

(i) λn(1 + θn) <1; (ii) 

limθn= 0; n→∞ 
∞ 

(iii) ∑λnθn= ∞, λn= o(θn); 

. 

Then, there exists a real constantγ0>0 such that ifλqn−1 < γ0θn ∀n ≥ 1 andf has 

aminimizer, then the sequence{xn} generated by the scheme(A1) converges to 

aminimizerofH. 

Proof: 
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Using the scheme in (A1), 

xn+1:   = xn− λn∇f(xn) − λnθn(xn− x1) 

= xn− λnxn+ λnxn− λn∇f(xn) − λnθn(xn− x1) 

 = xn− λnxn+ λn(xn− ∇f(xn)) − λnθn(xn− x1) = (1 − λn)xn+ 

λn(I − ∇f)xn− λnθn(xn− x1). 

Setting T :=I − ∇f, we have xn+1 = (1 − λn)xn+ λnwn− λnθn(xn− x1) for some wn∈ 
Txnwhich is exactly the scheme in Theorem 1.6, where our map T here is singled-
valued. We note that 

 

Tx∗ = x∗ ⇔ x∗ − ∇f(x∗) = x∗  

                       ⇔ ∇f(x∗) = 0. 

Therefore by lemma 4.1.7 x∗ ∈ F(T) if and only if x∗ is a minimizer of fon H. It is 
enough, therefore, to show that {xn} converges to a fixed point of T. To do this, we 
employ theorem 1.6. 

Space requirement: The authors in [2] worked on a nonempty, open and convex 
subset D of a q-uniformly smooth real Banach space X. We have a real Hilbert space 
H, i.e., X = H, and we take D = H. It is well known that every Hilbert space is 2-
uniformly smooth space (see Remark 2.1). So, this condition is satisfied. Also H is 
open convex and nonempty. So the space requirement is satisfied. 

Map requirements: In Theorem 1.6 the map used is a multi-valued continuous, 
bounded and pseudo-contractive mapping. We need to show that the map used in 
the application (A1) also satisfies all these conditions. Since our map T is single-
valued, we have Tx= {x − ∇f(x)} which is closed and bounded (singleton sets are 
closed in every metric space). Thus Tx∈ CB(H). 

We now need to show that the map T :=I − ∇f is bounded. Now, let B be a bounded 
subset of H. Then we can find some m1 >0 such that 

||x|| ≤ m1 ∀x ∈ B. 

By Lemma 2.5 ∇f is indeed bounded, i.e., there exists some m2 >0 such that 
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For x ∈ B, 

 ||∇f(x)k||≤ m2 ∀x ∈ B. 

||Tx|| = ||(I − ∇f)(x)|| 
 = ||x − ∇f(x)|| 

 ≤ ||x|| + ||∇f(x)|| (by triangular inequality) 

 ≤ m1 + m2. 

Thus, the map T is bounded. 

For pseudo-contractiveness, ∇f is maximal monotone (from the property of the sub-
differential function in Remark 2.3) and continuous from the hypothesis. Clearly by 
Lemma 2.6 I −∇f is pseudo-contractive. Also, I (the identity function) is a continuous 
function and the difference of two continuous functions is also a continuous 
function. Thus the map T :=I − ∇f is continuous. In Theorem 1.6, it is assumed that 
the set of fixed points is not empty. We assumed that the minimization problem has 
a solution. Since the fixed point set of T is the same as the set of the minimizers of 
fover H, we have that the fixed point set of T is nonempty. Thus, all the map 
requirements are satisfied. 

We therefore conclude that {xn} converges to a fixed point of T which is a minimizer 
of f. This completes the proof. 

Corollary 2.1.1Letf :Rn→ R be a convex and continuously differentiable function on 

afinitedomain. Let{xn} be a 

sequence inD(f) generated 

iteratively by 

(AC) 
. 

Where{λn} and{θn} are sequences in (0,1) satisfying the following conditions: 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 8, Issue 8, August-2017                                            841 
ISSN 2229-5518odd page      

IJSER © 2017 
http://www.ijser.org 

(i) λn(1 + θn) <1; (ii) 

limθn= 0; n→∞ 
 

∞ 

(iii) ∑λnθn= ∞, λn= o(θn); 

. 

Then, there exists a real constant γ0>0 such that ifλqn−1 < γ0θn ∀n ≥ 1 andT 

hasaminimumonD(T) then{xn} converges to a minimizer ofRn. 

Proof:  
Because of the fact that Rnwith the Euclidian norm is a Hilbert space, the proof 
follows directly from the proof of (2.1). 
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